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a b s t r a c t

The contact problem for hollow and solid circular cylinders with a symmetrically fitted belt and stress-
free faces is considered. Homogeneous solutions corresponding to zero stresses on the cylinder faces
are obtained. The generalized orthogonality of homogeneous solutions is used to satisfy the modified
boundary conditions. In the final analysis the problem is reduced to a system of integral equations in the
functions describing the displacement of the outer and inner surfaces of the cylinders. These functions are
sought in the form of the sum of a trigonometric series and a power function with a root singularity. The
ill-posed infinite systems of algebraic equations obtained as a result, are regularized by introducing small
positive parameters [Ref. Kalitkin NN. Numerical Methods. Moscow: Nauka; 1978] and, after reduction,
have stable regularized solutions. Since the elements of the matrices of the system are given by poorly
converging numerical series, an effective method of calculating the residues of these series is developed.
Formulae for the distribution function of the contact pressure and the integral characteristic are obtained.
Since the first formula contains a third-order derivative of the functional series, a numerical differentiation
procedure is employed when using it [Refs. Kalitkin NN. Numerical Methods. Moscow: Nauka; 1978;
Danilina NI, Dubrovskaya NS, Kvasha OP et al. Numerical Methods. A Student Textbook. Moscow: Vysshaya
Shkola; 1976]. Examples of the analysis of a cylindrical belt are given.

© 2008 Elsevier Ltd. All rights reserved.

1. Formulation of the problem and the homogeneous solutions

We consider, in a cylindrical system of coordinates r, �, z, the axisymmetric problem of the contact between a hollow elastic cylinder
with radii R0, R1 (0 < R0 < R1) and finite length (|z| ≤ 1) with a symmetrically fitted rigid belt, having a width 2a and a base r = R1 − �(z), where
�(z) is a function, even in z (Fig. 1). We will assume that there are no friction forces in the belt - cylinder contact area, and the faces of the
cylinder and its surface r = R0 are not loaded. The boundary conditions can then be written in the form

(1.1)

(1.2)

(1.3)

We will use the general representation of the solution of an axisymmetric problem in terms of the Love biharmonic function �(r, z)
(Ref. 3)

(1.4)

where G is the shear modulus and � is Poisson’s ratio.
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Fig. 1.

For a hollow cylinder we will seek Love’s function in the form � = f(0)(r)�(z). Here

H(1)
s (�r) and H(2)

s (�r) are Hankel functions, and c1, c2 and � are constants. From relations (1.4) we obtain

(1.5)

Satisfying boundary conditions (1.1), we obtain the relations

The non-trivial solutions in this system can be expressed in terms of the roots �n of the equation

(1.6)

Below we give the asymptotic form of these roots and an iterational scheme for calculating them

Putting

in the second equation of (1.5), we obtain the eigenfunction �n(z) and the stress-strain state, corresponding to the non-zero eigenvalue �n

(n = 1, 2, . . .)

(1.7)
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The following correspond to the root �0 = 0

(1.8)

From relations (1.7) and (1.8) we obtain for r = Rs (s = 0, 1)

(1.9)

(1.10)

Here and henceforth the prime on the summation sign denotes the truncated form

For a solid cylinder of radius R (Fig. 1 with R0 = 0, R1 = R, 0 ≤ r ≤ R) Love’s function will be sought in the form � = J0(�r)�(z), while relations
of the type (1.9) have the form

(1.11)

Here J0(�nR), J1(�nR) are Bessel functions.
Applying Betti’s theorem to the homogeneous solutions (1.9) and (1.11), corresponding to the two different eigenvalues �n and �m(m �= n),

we obtain the condition for their generalized orthogonality5

(1.12)

2. Method of solution

We introduce the following notation

(2.1)

Here u(z) and g(z) are the required functions, even in z. Then, the second boundary condition (1.2), supplemented by the first relation of
(2.1), can be written in the form

(2.2)

Since the functional series (1.10), which determine the left-hand sides of the first condition (1.2) and conditions (1.3) and (2.2), diverge
(this can be shown by an a posteriori analysis of the solution), the above boundary conditions can be replaced by the following:

(2.3)
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(2.4)

(2.5)

Here

Eqs. (2.3) and (2.4) are equivalent to the following system of relations

(2.6)

Here

(2.7)

Further, using the condition of generalized orthogonality (1.12), we can determine the constants fn,s. Multiplying the first equation of
(2.6) by �msh�mz, and the second by F′

m(z), and then adding and integrating with respect to z, we obtain

(2.8)

Replacing the coefficients f0,s, f1,s, f2,s, . . . in relation (2.5) by the integrals (2.7) and (2.8) and taking equalities (2.1) into account, we can
write condition (2.5) in the form

(2.9)

for s = 1, a ≤ z ≤ 1 and for s = 0, 0 ≤ z ≤ 1where

Suppose the given function �(�) and the required functions g(�), u(�) are defined by the series

(2.10)
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(2.11)

From the condition �(a) = g(a) we obtain

(2.12)

(2.13)

Substituting expressions (2.10), (2.11) and (2.13) into Eqs. (2.9) and equating the coefficients of �k(k = 0, 1, . . .) to zero, we obtain a system
of functional equations

(2.14)

for s = 1, a ≤ z ≤ 1 and for s = 0, 0 ≤ z ≤ 1 where

(2.15)

(2.16)
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Here C(�∗
n) and S(�∗

n) are Fresnel integrals,4 calculated for |�nl| ≤ 22 using series (2.16).
It is easy to show (see Section 3), that the functional series (2.15) converge uniformly in the interval [0, 1], and consequently they

can be integrated term by term. Multiplying Eq. (2.14) when s = 1 by coslm(z − a) and when s = 0 by cosbmz (m = 0, 1, . . .) and integrat-
ing over the interval [a, 1] and [0, 1] respectively, we obtain two infinite systems of algebraic equations in the unknowns X(k)

h
, X̃(k)

h
(h = 0, 1, . . .)

(2.17)

Bearing in mind the integrals

(2.18)

we obtain expressions for the elements of the matrices A, B, Ã, B̃ and the vectors b̃
(k)

, b̃(k)

(2.19)
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Integral Eq. (2.9) are a consequence of the ill-posed problem, and hence both systems of (2.17) are ill-posed and they must be regularized
by introducing small positive parameters 	 and ˜̨ .1 The regularized systems have the form

(2.20)

Hence, we determine the regularized solutions Y(k), Ỹ
(k)

and the functions

(2.21)

(2.22)

Then, from formulae (2.9) we obtain the functions 
(Rs, z) (s = 0, 1), in terms of which the stresses 
r(Rs, z) = 
′′′(Rs, z) are expressed. We
have

(2.23)

When n ≥ entire (9/R0) the quantities As
n,s (s = 0, 1) and the hyperbolic functions, for example, ch�nz, can be calculated from the formulae

For a solid cylinder (R0 = 0 and R1 = R), boundary condition (2.9) when s = 1, the functional equation (2.14) when s = 1 and the systems of
algebraic Eqs. (2.17) and (2.20) have the form

(2.24)

(2.25)

where
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3. Calculation of the residues of the numerical and functional series

Series (2.15) and (2.19) can be represented in the form

Here R(h)
p (z), Rh

p(m) are the residues, beginning with the (p + 1)-th term, p ≥ 4000.
If we introduce the notation

and solve Eq. (1.6) for exp(2�n), then, raising exp(2�n) to the power a, we obtain

Taking this formula into account for large n and small ln/�n, the integrals J(h)
n , Jzn, . . . , h0

mn, the quantities As
n,s and the functions F̃n(z), H̃n(z)

can be expanded in series in powers of �n

(3.1)

Multiplying the expansions by the corresponding quantities from formulae (3.1) and dropping terms of higher order of smallness than
�2

n, we obtain, with the accuracy indicated, expressions for the n-th terms of the residues

(3.2)

The expressions Q ∗
h,n

, Q j
k,n

, . . . are sums of a finite number of terms of the form �s
nA or zn(�)�s

nA. In view of the length of these expressions
we will only give below the principal part of the most important of these

(3.3)

Further, we use the following summation formulae and theorem5,6

(3.4)
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(3.5)

where B1(�̃) = �̃ − 1/2, B2(�̃) = �̃2 − �̃ + 1/6 are Bernoulli polynomials.

Theorem. Suppose the following conditions are satisfied

Then, the functional series (3.4) converges uniformly in D. If

the series converges uniformly in D0 for any values of 
(M).

Having the partial sums (3.2) and (3.3) and formulae (3.5), we can investigate the convergence of the series (2.15) and (2.19) and calculate
the residues of these series R(h)

p (z), Rh
p(m), . . ..5 In particular, using relations (3.3), we calculate the residue

Note that, in integral Eqs. (2.9) and (2.24), the kernels Kh, s(�, s) (h, s = 0, 1, K(�, z) are continuous and bounded in the region D{�, z ∈ [0,
1]}, in which case the kernel Kh, h(�, z), and K(�, z) in the band D*{|� − z| → 0} have a singularity of the type (� − z)ln|� − z|.5

The accuracy of the calculation of the residue Rp was monitored using the quantity �p. Thus, when checking the residues R(0)
p (0.5), R(0)

p (0)
(a = 0.25, R1 = 0.5, R0 = 0.1, v = 0.3, p = 4000) the following values were obtained:

4. Determination of the contact pressure

We will present examples of the calculation of a cylindrical belt �(z) ≡ �0, k = 0; a = 0.25, R1 = R = 0.5 for the following versions: 1) R0 = 0.1,
2) R0 = 0.2 and 3) R0 = 0 (a solid cylinder). The infinite systems (2.20) and (2.25) in the unknowns Y (0)

s , Ỹ (0)
s (s = 0, 1, . . .) (the zero superscript

on the quantities Y (0)
s , u(0), . . . is henceforth omitted) were truncated and solved for several values of 	 and ˜̨ . For each version we chose

its own set of least values of the regularization parameters (the values of the pair of parameters (˛, ˜̨ ) and the single parameter 	 were as
follows: (8 × 10−19, 6 × 10−18), (3 × 10−19, 5 × 10−18) and 5 × 10−19 for Versions 1, 2 and 3 respectively), for which we have already observed
considerable amplitudes of the oscillations of the regularized solutions Ys, Ỹs (s = 0, . . ., 80), but the discrepancy was fairly small:

In Table 1 we show values of Ys × 105 and Ỹs × 105.
In Fig. 2 we show graphs of the functions g0(z) and u0(z) u(z), obtained from formulae (2.21) and (2.22), where the number on the

curve corresponds to the number of the version.
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Table 1

s Ys · 105 Ỹs · 105

Versions

1 2 3 1 2

0 −246458 −204089 −263413 −17320 −30048
1 57574 −4490 81124 −273980 −473484
2 53772 79614 46640 −332328 −562318
3 273826 202414 298161 −78428 −81653
75 −407 −305 −692 −4741 −6658
76 57 144 101 4534 6427
77 397 −276 −690 −4324 −6072
78 5 128 11 4142 5878
79 −410 −264 −712 −3954 −5549
80 −50 103 −102 3797 5407

Fig. 2.

In order to obtain the contact pressure q(z) = −
(R1, z) (|z| ≤ a) we use relations (2.23) with k = 0

In the case of a solid cylinder we have

Hence it follows that the dimensionless distribution functions of the contact pressure ϕ̃(z) and the integral characteristic N0 are given by
the expressions

(4.1)
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Table 2

k �(tk)

Versions

1 2 3

0 4.396 3.008 4.937
1 4.424 3.045 4.962
2 4.521 3.167 5.049
3 4.735 3.416 5.248
4 5.210 3.921 5.712
5 6.562 5.213 7.092

Table 3

Quantities Versions

1 2 3 4

�1 3.026 2.297 3.312 3.420
�2 1.099 0.752 1.234 1.290
�3 0.853 0.713 0.912 0.896
u(0) 0.5344 0.9069 – –
u(1) −0.0429 −0.0683 – –
g0(1) −0.0426 −0.0578 −0.0320 –

Also, for a solid cylinder

(4.2)

Taking into account the equalities

we obtain formulae for the integral characteristics of hollow and solid cylinders

Further, we carry out numerical differentiation of the functions specified on a uniform grid with step h = zk+1 − zk (zk are nodes of the
grid). To calculate the third-order derivative �′′′(R1, z) at the central node z = z0 with respect to the seven nodes zk = z0 + kh (k = −3, . . ., 3;
0.0005 ≤ h ≤ 0.001), a formula of increased accuracy5 is used, namely

In Table 2 we show the values of the function ϕ(t) ≡ ϕ̃(at)
(

t = z
a

)
for t = tk = k/6, while in Table 3 we show values of the quantities

(� = 0.3)

and the functions u(z) and g0(z) for z = 0 and z = 1.
Comparing the values of �r (r = 1, 2, 3) for solid and hollow cylinders of finite dimensions with the corresponding values of �r for an

infinite solid cylinder (Version 4, see Ref. 3, p. 97), we see that they differ by less than 4.3% (Version 3), 15% (Version 1) and 42% (Version 2).
In the upper right-hand part of Fig. 2 we show graphs of the function �(t) obtained using formulae (4.1) and (4.2). In order to explain

these graphs, we separate out the root singularity in the contact stress, using the following representation, for example, the functions 
r(R,
z) (Version 3) in the neighbourhood of the point z = a

(4.3)

Here L2(z) = a0 + a1(a − z) + a2(a − z)2 is the interpolation polynomial for the function y(z) = ϕ̃(z)
√

a − z, specified at the interpolation nodes
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Calculating the values of y(zk) for h = 0.0006 and then ak, we obtain

Note the good agreement between the quantities a0/
√

2 = 0.908 and �3 = 0.912 (see Table 3).
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